[FRAUD] 데이터정리 시도(8.22 df02시도)

Author

김보람

Published

August 22, 2023

imports

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import networkx as nx
import sklearn
import torch

# sklearn
from sklearn import model_selection # split함수이용
from sklearn import ensemble # RF,GBM
from sklearn import metrics 

# embedding 
from node2vec import Node2Vec
from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder
def build_graph_bipartite(df_input, graph_type=nx.Graph()):
    df=df_input.copy()
    mapping={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
                                                      df["merchant"].values.tolist()))}
    
    df["from"]=df["cc_num"].apply(lambda x:mapping[x])  #엣지의 출발점
    df["to"]=df["merchant"].apply(lambda x:mapping[x])  #엣지의 도착점
    
    df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
    df["is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
    
    G=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
    
    nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label")  #엣지 속성 설정,각 속성의 사기 여부부     
    nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액

    return G


def build_graph_tripartite(df_input, graph_type=nx.Graph()):
    df=df_input.copy()
    mapping={x:node_id for node_id, x in enumerate(set(df.index.values.tolist() + 
                                                       df["cc_num"].values.tolist() +
                                                       df["merchant"].values.tolist()))}
    df["in_node"]= df["cc_num"].apply(lambda x: mapping[x])
    df["out_node"]=df["merchant"].apply(lambda x:mapping[x])
    
        
    G=nx.from_edgelist([(x["in_node"], mapping[idx]) for idx, x in df.iterrows()] +\
                        [(x["out_node"], mapping[idx]) for idx, x in df.iterrows()], create_using=graph_type)
    
    nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")     
    nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")   
    nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")  
    nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")

    return G
    
    
def down_sample_textbook(df):
    df_majority = df[df.is_fraud==0].copy()
    df_minority = df[df.is_fraud==1].copy()
    df_maj_dowsampled = sklearn.utils.resample(df_majority, n_samples=len(df_minority), replace=False, random_state=42)
    df_downsampled = pd.concat([df_minority, df_maj_dowsampled])
    return df_downsampled

def embedding(Graph):
    # Graph -> X (feature)
    _edgs = list(Graph.edges)
    subGraph = Graph.edge_subgraph([_edgs[x] for x in range(len(Graph.edges))]).copy()
    subGraph.add_nodes_from(list(set(Graph.nodes) - set(subGraph.nodes)))    
    embedded = AverageEmbedder(Node2Vec(subGraph, weight_key='weight').fit(window=10).wv)
    X = [embedded[str(_edgs[x][0]), str(_edgs[x][1])] for x in range(len(Graph.edges))]
    # Graph -> y (label)
    y = np.array(list(nx.get_edge_attributes(Graph, "label").values()))
    return X,y 

def anal(df):
    Graph = build_graph_bipartite(df)
    X,XX,y,yy = embedding(Graph)
    lrnr = RandomForestClassifier(n_estimators=100, random_state=42) 
    lrnr.fit(X,y)
    yyhat = lrnr.predict(XX)
    df = pd.DataFrame({
        'acc':[sklearn.metrics.accuracy_score(yy,yyhat)], 
        'pre':[sklearn.metrics.precision_score(yy,yyhat)], 
        'rec':[sklearn.metrics.recall_score(yy,yyhat)],
        'f1':[sklearn.metrics.f1_score(yy,yyhat)]}
    )    
    return df

def our_sampling1(df):
    cus_list = set(df.query('is_fraud==1').cc_num.tolist())
    return df.query("cc_num in @ cus_list")
fraudTrain = pd.read_csv("~/Desktop/fraudTrain.csv").iloc[:,1:]
fraudTrain = fraudTrain.assign(trans_date_trans_time= list(map(lambda x: pd.to_datetime(x), fraudTrain.trans_date_trans_time)))
fraudTrain
trans_date_trans_time cc_num merchant category amt first last gender street city ... lat long city_pop job dob trans_num unix_time merch_lat merch_long is_fraud
0 2019-01-01 00:00:00 2.703190e+15 fraud_Rippin, Kub and Mann misc_net 4.97 Jennifer Banks F 561 Perry Cove Moravian Falls ... 36.0788 -81.1781 3495 Psychologist, counselling 1988-03-09 0b242abb623afc578575680df30655b9 1325376018 36.011293 -82.048315 0
1 2019-01-01 00:00:00 6.304230e+11 fraud_Heller, Gutmann and Zieme grocery_pos 107.23 Stephanie Gill F 43039 Riley Greens Suite 393 Orient ... 48.8878 -118.2105 149 Special educational needs teacher 1978-06-21 1f76529f8574734946361c461b024d99 1325376044 49.159047 -118.186462 0
2 2019-01-01 00:00:00 3.885950e+13 fraud_Lind-Buckridge entertainment 220.11 Edward Sanchez M 594 White Dale Suite 530 Malad City ... 42.1808 -112.2620 4154 Nature conservation officer 1962-01-19 a1a22d70485983eac12b5b88dad1cf95 1325376051 43.150704 -112.154481 0
3 2019-01-01 00:01:00 3.534090e+15 fraud_Kutch, Hermiston and Farrell gas_transport 45.00 Jeremy White M 9443 Cynthia Court Apt. 038 Boulder ... 46.2306 -112.1138 1939 Patent attorney 1967-01-12 6b849c168bdad6f867558c3793159a81 1325376076 47.034331 -112.561071 0
4 2019-01-01 00:03:00 3.755340e+14 fraud_Keeling-Crist misc_pos 41.96 Tyler Garcia M 408 Bradley Rest Doe Hill ... 38.4207 -79.4629 99 Dance movement psychotherapist 1986-03-28 a41d7549acf90789359a9aa5346dcb46 1325376186 38.674999 -78.632459 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1048570 2020-03-10 16:07:00 6.011980e+15 fraud_Fadel Inc health_fitness 77.00 Haley Wagner F 05561 Farrell Crescent Annapolis ... 39.0305 -76.5515 92106 Accountant, chartered certified 1943-05-28 45ecd198c65e81e597db22e8d2ef7361 1362931649 38.779464 -76.317042 0
1048571 2020-03-10 16:07:00 4.839040e+15 fraud_Cremin, Hamill and Reichel misc_pos 116.94 Meredith Campbell F 043 Hanson Turnpike Hedrick ... 41.1826 -92.3097 1583 Geochemist 1999-06-28 c00ce51c6ebb7657474a77b9e0b51f34 1362931670 41.400318 -92.726724 0
1048572 2020-03-10 16:08:00 5.718440e+11 fraud_O'Connell, Botsford and Hand home 21.27 Susan Mills F 005 Cody Estates Louisville ... 38.2507 -85.7476 736284 Engineering geologist 1952-04-02 17c9dc8b2a6449ca2473726346e58e6c 1362931711 37.293339 -84.798122 0
1048573 2020-03-10 16:08:00 4.646850e+18 fraud_Thompson-Gleason health_fitness 9.52 Julia Bell F 576 House Crossroad West Sayville ... 40.7320 -73.1000 4056 Film/video editor 1990-06-25 5ca650881b48a6a38754f841c23b77ab 1362931718 39.773077 -72.213209 0
1048574 2020-03-10 16:08:00 2.283740e+15 fraud_Buckridge PLC misc_pos 6.81 Shannon Williams F 9345 Spencer Junctions Suite 183 Alpharetta ... 34.0770 -84.3033 165556 Prison officer 1997-12-27 8d0a575fe635bbde12f1a2bffc126731 1362931730 33.601468 -83.891921 0

1048575 rows × 22 columns

시도

_df1 = fraudTrain[fraudTrain["is_fraud"] == 0].sample(frac=0.20, random_state=42)
_df2 = fraudTrain[fraudTrain["is_fraud"] == 1]
df02 = pd.concat([_df1,_df2])
df02.shape
(214520, 22)
214520*214520
46018830400
df02.is_fraud.mean().round(5)
0.028
  • 사기거래 빈도..
df02 = df02.reset_index()
N = len(df02)

tr/test

df02_tr,df02_test = sklearn.model_selection.train_test_split(df02, random_state=42)
df02_tr.is_fraud.mean().round(5), df02_test.is_fraud.mean().round(5)
(0.02757, 0.02927)
df02_tr.shape, df02_test.shape
((160890, 23), (53630, 23))
train_mask = np.concatenate((np.full(160890, True), np.full(53630, False)))
test_mask = np.concatenate((np.full(160890, False), np.full(53630, True)))
print("Train Mask:", train_mask)
print("Test Mask:", test_mask)
Train Mask: [ True  True  True ... False False False]
Test Mask: [False False False ...  True  True  True]
train_mask.sum(), test_mask.sum()
(160890, 53630)
df02_com = pd.concat([df02_tr, df02_test])
df02_com = df02_com.reset_index()
np.save('df02_com.npy', df02_com)
df02_com
level_0 index trans_date_trans_time cc_num merchant category amt first last gender ... lat long city_pop job dob trans_num unix_time merch_lat merch_long is_fraud
0 176322 944206 2020-01-12 14:26:00 1.800680e+14 fraud_Durgan, Gislason and Spencer home 83.42 Mary Juarez F ... 42.9385 -88.3950 2328 Applications developer 1942-01-06 dac0ad2e6b9956237cdca85beea4b422 1358000819 43.301471 -88.731241 0
1 57361 305252 2019-05-27 23:22:00 4.158950e+15 fraud_Douglas-White entertainment 119.90 Justin Bell M ... 40.4308 -79.9205 687276 Scientist, marine 1973-10-19 6660431462def289ceb3e176e88f58e5 1338160935 40.673836 -80.710911 0
2 76922 326443 2019-06-04 19:27:00 3.040770e+13 fraud_Bernier and Sons kids_pets 47.11 Danielle Evans F ... 42.1939 -76.7361 520 Psychotherapist 1991-10-13 3e0fdbbb80e5e068e5873be2a539cc24 1338838050 42.298622 -77.473862 0
3 73661 515686 2019-08-11 09:04:00 4.319580e+18 fraud_Kutch LLC gas_transport 56.51 Kathleen Nash F ... 37.1788 -82.6950 502 Chief Financial Officer 1960-02-01 66c331ada80949f23b6eb54a2a805b30 1344675872 37.867947 -83.096063 0
4 149325 217309 2019-04-20 21:16:00 6.041621e+10 fraud_Beer-Jast kids_pets 1.42 Mary Diaz F ... 43.0048 -108.8964 1645 Information systems manager 1986-02-17 73d345383dacf28ddb303df878af6034 1334956594 43.454507 -109.492721 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
214515 209807 138275 2019-03-16 22:16:00 6.761020e+11 fraud_Crooks and Sons personal_care 23.07 Natasha Mclaughlin F ... 38.4549 -122.2564 94014 Airline pilot 1985-08-21 f5ed056d58e7cafe35201991383d5af7 1331936181 38.440172 -121.930178 1
214516 116046 108839 2019-03-03 16:55:00 3.453890e+14 fraud_Dooley Inc shopping_pos 2.57 Justin Fowler M ... 33.9215 -89.6782 3451 Financial trader 1984-05-19 617d850e784d23f70bdbf99aec16877d 1330793701 34.248988 -88.691253 0
214517 84374 244548 2019-05-02 21:02:00 4.170690e+15 fraud_Hettinger, McCullough and Fay home 15.40 Samuel Frey M ... 35.6665 -97.4798 116001 Media buyer 1993-05-10 6e7be41baa4854c8c122124573ab826a 1335992520 34.789935 -96.704044 0
214518 766 968783 2020-01-26 17:33:00 4.477160e+18 fraud_Jast Ltd shopping_net 66.19 Angela Ross F ... 40.3928 -111.7941 42384 Futures trader 1992-12-29 823cb59773e114b5de50c51ce520f181 1359221619 40.382572 -111.342788 0
214519 18374 929851 2020-01-04 13:22:00 4.742880e+18 fraud_Kihn-Schuster food_dining 30.57 Cassandra Sanders F ... 20.0271 -155.3697 1490 Scientist, research (maths) 1991-04-13 a0921bbdc96d65bfcfdb78b369233303 1357305750 21.010877 -155.079405 0

214520 rows × 24 columns


데이터 돌아가는중..

import time 
t1= time.time()
edge_index_list_plus = []
_cc_num = np.array(df02_com['cc_num'])
_trans_date_trans_time=np.array(df02_com['trans_date_trans_time'].apply(lambda x: x.value))
for i in range(N):
    for j in range(N):
        if _cc_num[i] != _cc_num[j]:  # cc_num 값이 다르다면
            time_difference = 0
        else:
            time_difference = abs(_trans_date_trans_time[i] - _trans_date_trans_time[j])
        edge_index_list_plus.append([i, j, time_difference])
edge_index_list_plus_nparr =np.array(edge_index_list_plus)
np.save('edge_index_list_plus_02.npy', edge_index_list_plus_nparr)
t2= time.time()
t2-t1
7.3492796421051025

데이터 돌아가는중…………………. 다시다시

edge_index = np.array(edge_index_list_plus)
edge_index.shape
(144288144, 3)
edge_index
array([[0.0000e+00, 0.0000e+00, 0.0000e+00],
       [0.0000e+00, 1.0000e+00, 0.0000e+00],
       [0.0000e+00, 2.0000e+00, 0.0000e+00],
       ...,
       [1.2011e+04, 1.2009e+04, 0.0000e+00],
       [1.2011e+04, 1.2010e+04, 0.0000e+00],
       [1.2011e+04, 1.2011e+04, 0.0000e+00]])
edge_index[:,2] = np.abs(edge_index[:,2])
theta = edge_index[:,2].mean()
theta
10973.519989002007
edge_index[:,2] = (np.exp(-edge_index[:,2]/theta)!=1) * np.exp(-edge_index[:,2]/theta)
edge_index
array([[0.0000e+00, 0.0000e+00, 0.0000e+00],
       [0.0000e+00, 1.0000e+00, 0.0000e+00],
       [0.0000e+00, 2.0000e+00, 0.0000e+00],
       ...,
       [1.2011e+04, 1.2009e+04, 0.0000e+00],
       [1.2011e+04, 1.2010e+04, 0.0000e+00],
       [1.2011e+04, 1.2011e+04, 0.0000e+00]])
edge_index_list_updated = edge_index.tolist()
np.array(edge_index_list_updated)[:,2].mean()
8.443606280313275e-05
mm = np.array(edge_index_list_updated)[:,2].mean()

시간이 평균보다 짧다면? . 음..

selected_edges = [(int(row[0]), int(row[1])) for row in edge_index_list_updated if row[2] > mm]
edge_index_selected = torch.tensor(selected_edges, dtype=torch.long).t()
edge_index_selected.shape
torch.Size([2, 51392])

data설정(x, edge_index, y)

x = df50_com['amt']
a = torch.tensor(x, dtype=torch.float)
a = a.reshape(-1,1)
a
tensor([[921.2400],
        [698.2800],
        [220.5600],
        ...,
        [ 17.9700],
        [  7.5800],
        [824.9900]])
y = df50_com['is_fraud']
b = torch.tensor(y,dtype=torch.int64)
b
tensor([1, 1, 0,  ..., 1, 0, 1])
import torch_geometric
data = torch_geometric.data.Data(x=a, edge_index = edge_index_selected, y=b, train_mask = train_mask, test_mask = test_mask)
data
Data(x=[12012, 1], edge_index=[2, 51392], y=[12012], train_mask=[12012], test_mask=[12012])


gnn



import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = GCNConv(1, 16)
        self.conv2 = GCNConv(16,2)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index

        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)

        return F.log_softmax(x, dim=1)
model = GCN()
model
GCN(
  (conv1): GCNConv(1, 16)
  (conv2): GCNConv(16, 2)
)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
GCN(
  (conv1): GCNConv(1, 16)
  (conv2): GCNConv(16, 2)
)

for epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
model.eval()
pred = model(data).argmax(dim=1)
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
acc = int(correct) / int(data.test_mask.sum())
print(f'Accuracy: {acc:.4f}')
Accuracy: 0.9321
`